Archives for posts with tag: Cisco

Dynamic Virtual Tunnel Interface.

It’s a similar concept to DMVPN but with a few differences

  • dVTI requires a smaller packet header only 4 bytes compared to DMVPN which is an additional 28 bytes
  • dVTI does not  use NHRP
  • dVTI has backwards compatibility with IPsec direct encapsulation
  • dVTI requires IP unumbered
  • dVTI requires the use of a dynamic routing protocol instead of keepalives
  • dVTI must be initiated by the remote branch to the head-end

I personally like the fact that the interface is unnumbered as it reduces the amount of IP address space that you need to manage. Each virtual template can be configured with different characteristics on the head-end device so that common branch offices share the same settings. This type of solution is ideal for a hub and spoke design.

I’m not saying dVTI is better or worse than DMVPN it’s just different.

The spoke forms an EIGRP neighbor with the HUB, you can then advertise a default route to the spoke. If you want to apply policies like QoS you can do this directly on the template interface.  The spoke will advertise the LAN network to the Hub and you can then summarise at the Hub into the data centre for multiple spokes.

Here is the configuration with a front VRF, this was tested in the lab on live equipment.

Hub Configuration

vrf definition internet
 rd 1:1
 address-family ipv4
 
 crypto keyring KEYRING vrf internet 
  pre-shared-key address [IP ADDRESS of SPOKE or match all] key cisco
 
 crypto isakmp policy 10
  encr aes
  hash sha256
  authentication pre-share
  group 14

crypto isakmp profile ISAKMPPROFILE
  keyring KEYRING
  match identity address [IP ADDRESS of SPOKE or match all] internet
  virtual-template 1

crypto ipsec transform-set TSET_SECURE esp-aes esp-sha256-hmac

interface Loopback0
  ip address 172.16.255.1 255.255.255.255
 
 interface gig0/0
  vrf forwarding internet
  description outside_interface
  ip address [WAN Interface IP and Subnet Mask] 
  no ip redirects
  no ip unreachables
  no ip proxy-arp

interface gig0/1
  description inside_interface
  ip address 192.168.255.50 255.255.255.0
  

interface Virtual-Template1 type tunnel
  ip unnumbered Loopback0
  ip mtu 1408
  ip summary-address eigrp 1 0.0.0.0 0.0.0.0
  tunnel mode ipsec ipv4
  tunnel vrf internet
  tunnel protection ipsec profile IPSECPROFILE_SECURE

router eigrp 1
  network 172.16.255.1 0.0.0.0

ip route vrf internet 0.0.0.0 0.0.0.0 [next-hop to internet]

Spoke Configuration

vrf definition internet
 rd 1:1
  address-family ipv4

crypto keyring 1 vrf internet 
  pre-shared-key address [IP address of HUB] cisco

crypto isakmp policy 10
  encr aes
  hash sha256
  authentication pre-share
  group 14

crypto ipsec transform-set TSET_SECURE esp-aes esp-sha256-hmac

crypto ipsec profile IPSECPROFILE_SECURE
  set transform-set TSET_SECURE

interface Loopback0
 ip address 172.16.255.2 255.255.255.255
 
 interface Tunnel0
  ip unnumbered Loopback0
  ip mtu 1408
  tunnel source gig0/1
  tunnel mode ipsec ipv4
  tunnel destination [IP address of HUB]
  tunnel vrf internet
  tunnel protection ipsec profile IPSECPROFILE_SECURE

interface gig0/1
  description outside_interface
  vrf forwarding internet
  ip address [WAN Interface IP and Subnet Mask or DHCP]

interface vlan 1 
  description inside_interface
  ip address 172.16.1.1 255.255.255.252
  no shut

router eigrp 1
  network 172.168.255.2 0.0.0.0
  network 172.16.1.1 0.0.0.0
  eigrp stub connected summary

To verify you can use commands like below.

“show ip int brief”
“show ip interface virtual-access1”
“show ip eigrp neighbors”
“show crypto isakmp sa”
“show crypto engine connections active”

Update: You might notice I have used classic EIGRP instead of EIGRP named mode, the reason was due to the fact that under the af-interface virtua- template I wasn’t able to set the summary route, the command was accepted but wasn’t being sent to the neighbor. Perhaps this is a bug in the version I was running.

 

Advertisements

DMVPN | Phase 3 | IPsec | VRF | Per-Tunnel QoS

Covering the configuration, confirmation and troubleshooting of DMVPN Phase 3 with IPsec and Per-Tunnel QoS. The main reason behind this is to help out my friend who is implementing a production design similar to this.

Below is the high level topology used for this lab. Its a fairly simple diagram but gives you the idea, the devil is in the detail (config)

DMVPN

For the dynamic routing protocol, I have chosen EIGRP, you could use BGP if you want a hyper-scale design. Phase 3 DMVPN is chosen simply to enable spoke-to-spoke communication and maintain a default route to the spokes. Phase 3 allows this by using redirect messages / shortcut routing in NHRP.

The purpose of this blog is not to explain DMVPN, there are plenty of resources for that.

Here is the config for the HUB.

vrf definition internet
!
address-family ipv4
exit-address-family
ip route vrf internet 0.0.0.0 0.0.0.0 [internet next-hop IP]
!
interface Tunnel0
ip address 10.100.0.4 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp authentication cisco
ip nhrp map multicast dynamic
ip nhrp map group Spoke-5 service-policy output DMVPN_5000kbps
ip nhrp map group Spoke-1 service-policy output DMVPN_1500kbps
ip nhrp map group Spoke-2 service-policy output DMVPN_10000kbps
ip nhrp network-id 123
ip nhrp redirect
ip tcp adjust-mss 1360
qos pre-classify
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel key 123
tunnel vrf internet
tunnel protection ipsec profile DMVPN
!
router eigrp DMVPN
!
address-family ipv4 unicast autonomous-system 123
!
af-interface Tunnel0
summary-address 0.0.0.0 0.0.0.0
no split-horizon
exit-af-interface
!
topology base
exit-af-topology
network 10.0.0.0
network 10.100.0.0 0.0.0.255
exit-address-family
crypto keyring dmvpn vrf internet
pre-shared-key address 0.0.0.0 0.0.0.0 key topsecret!
!
crypto isakmp policy 100
encr aes 256
authentication pre-share
group 5
!
crypto ipsec transform-set DMVPN esp-aes esp-sha-hmac
!
crypto ipsec profile DMVPN
set transform-set DMVPN

 

QOS – On the hub tunnel interface you can set the QoS policies to map to a group name, then on the spoke you can set the command to have the tunnel subscribe to a particular group.

The QoS polices need to be setup in a specific way with parent and child policies, this way you can be specific in which spoke gets which shaper settings. Create a policy with your required settings see example below.

policy-map DMVPN
class icmp
police 8000
class telnet
set precedence 4
class www
police 80000
set precedence 6

 

Then create your shaping policy and attach the child policy like below.

policy-map DMVPN_5000kbps
class class-default
shape average 5000000
service-policy DMVPN

 

Front Door VRF – The reason for this is to allow a default route for internet access and also allow a default route for LAN traffic. The Internet facing interface is in its own VRF and routes from this are not part of the global routing table.  We simply tell the tunnel to use the VRF for its NBMA routing with a simple command “tunnel vrf [name of VRF]“. Once this is enabled we can have a default route for LAN traffic via the tunnel and a default route for internet traffic.

A great write up by Denise Fishburn can be found here. http://www.networkingwithfish.com/tunnels-and-the-use-of-front-door-vrfs

IPsec – Using the front door VRF, we have to adjust the crypto keyring slightly to apply the VRF to the key and address.

Confirmation – From the HUB one command can tell us all we need to know from a DMVPN perspective. It shows the tunnel interface and number of peers,  DMVPN peers and the QoS profiles they are subscribed to and shows the IPsec details.

HUB#show dmvpn detail

 

Interface Tunnel0 is up/up, Addr. is 10.100.0.4, VRF “”
Tunnel Src./Dest. addr: 172.16.3.10/MGRE, Tunnel VRF “internet”
Protocol/Transport: “multi-GRE/IP”, Protect “DMVPN”
Interface State Control: Disabled
nhrp event-publisher : Disabled
Type:Hub, Total NBMA Peers (v4/v6): 3
# Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb Target Network
—– ————— ————— —– ——– —– —————–
1 172.16.1.10 10.100.0.1 UP 02:54:32 D 10.100.0.1/32
NHRP group: Spoke-1
Output QoS service-policy applied: DMVPN_1500kbps
1 172.16.2.10 10.100.0.2 UP 02:54:32 D 10.100.0.2/32
NHRP group: Spoke-2
Output QoS service-policy applied: DMVPN_100kbps
1 172.16.5.10 10.100.0.5 UP 02:54:32 D 10.100.0.5/32
NHRP group: Spoke-5
Output QoS service-policy applied: DMVPN_5000kbps
Crypto Session Details:
——————————————————————————–
Interface: Tunnel0
Session: [0xF384C6B8]
IKEv1 SA: local 172.16.3.10/500 remote 172.16.1.10/500 Active
Capabilities:(none) connid:1005 lifetime:21:05:26
Crypto Session Status: UP-ACTIVE
fvrf: internet, Phase1_id: 172.16.1.10
IPSEC FLOW: permit 47 host 172.16.3.10 host 172.16.1.10
Active SAs: 2, origin: crypto map
Inbound: #pkts dec’ed 2635 drop 0 life (KB/Sec) 4150500/3474
Outbound: #pkts enc’ed 2655 drop 0 life (KB/Sec) 4150500/3474
Outbound SPI : 0x B4E148D, transform : esp-aes esp-sha-hmac
Socket State: Open

 

Here is the config for one of the spokes. The crypto config is identical to the HUB so omitted for brevity.

vrf definition internet
!
address-family ipv4
exit-address-family
ip route vrf internet 0.0.0.0 0.0.0.0 [internet next-hop ip]
interface Tunnel0
ip address 10.100.0.1 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp authentication cisco
ip nhrp group Spoke-1
ip nhrp map 10.100.0.4 [NBMA – HUB]
ip nhrp map multicast [NBMA – HUB]
ip nhrp network-id 123
ip nhrp nhs 10.100.0.4
ip nhrp shortcut
ip tcp adjust-mss 1360
qos pre-classify
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel key 123
tunnel vrf internet
tunnel protection ipsec profile DMVPN
router eigrp DMVPN
!
address-family ipv4 unicast autonomous-system 123
!
topology base
exit-af-topology
network 10.0.0.0
network 10.100.0.0 0.0.0.255
eigrp stub connected summary
exit-address-family

 

Confirmation on the spoke is similar to the hub using the “show dmvpn detail” command lists everything you need to know from a DMVPN and IPsec perspective.

Just to confirm everything is OK lets run some commands from the spoke

Spoke1# ping 10.0.2.1 sou lo 2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.2.1, timeout is 2 seconds:
Packet sent with a source address of 10.0.1.1
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 9/15/22 ms
!
Spoke1#traceroute 10.0.2.1 sou lo 2
Type escape sequence to abort.
Tracing the route to 10.0.2.1
VRF info: (vrf in name/id, vrf out name/id)
1 10.100.0.2 13 msec 9 msec 8 msec
!
Spoke1#sh ip nhrp shortcut
10.0.2.0/24 via 10.100.0.2
Tunnel0 created 00:00:26, expire 00:01:13
Type: dynamic, Flags: router used rib
NBMA address: 172.16.2.10
!
Spoke1#sh ip route nhrp
H 10.0.2.0/24 [250/1] via 10.100.0.2, 00:00:31, Tunnel0
!
Spoke1#sh ip route eigrp
Gateway of last resort is 10.100.0.4 to network 0.0.0.0
D* 0.0.0.0/0 [90/76800640] via 10.100.0.4, 03:07:27, Tunnel0
!
Spoke1#sh ip eigrp ne
EIGRP-IPv4 VR(DMVPN) Address-Family Neighbors for AS(123)
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 10.100.0.4 Tu0 13 03:08:04 23 1398 0 30
!
Spoke1#show ip cef 10.0.2.1

10.0.2.0/24
nexthop 10.100.0.2 Tunnel0

 

We can see spoke to spoke ping is ok, traceroute is direct to spoke, NHRP has a shortcut, the routing table has an NHRP route, and a default route (Global Routing Table) with one EIGRP neighbor. All looks good.

Troubleshoot – The best command to use is the “debug dmvpn detail all” this will debug crypto and nhrp.  It can be a lot to look at so perhaps you might want to use the”debug crypto isakmp“or “debug crypto ipsec” individually, depends on which part is failing.

RH

Ran into this at the weekend when I was working on some Data Centre switches, within the fabric the switches use jumbo MTU. So when I tried to peer a device that was not part of the fabric, I got stuck in EXSTART.

run “debug ip ospf adj” you will get a message similar to this.

OSPF-1 ADJ Gi0/0: Nbr 10.1.1.1 has smaller interface MTU

Answer: match the MTU on both sides.
I had a read through TCP/IP Volume 1, It doesn’t mention MTU size anywhere. RFC 2328 does mention it.

If the Interface MTU field in the Database Description packet
indicates an IP datagram size that is larger than the router can
accept on the receiving interface without fragmentation, the
Database Description packet is rejected.

This is where wireshark comes in handy.

The MTU isnt sent in the Hello packet its sent in the type 2 DBD packet, this is after the neighbors acknowledge each other (2WAY). See below.

mtu-ospf

RH

Some time ago I setup SIP trunking , I had to configure voice translation rules on the CUBE. Here’s are a few I setup that might help you (numbers changed). Once the numbers were translated they would match dial-patterns and be routed respectively.

Using regular expression.

Number 1 translates an incoming call to a 4 digit extension.

voice translation-rule 1
rule 1 /^02081234567/ /1111/

R1#test voice translation-rule 1 02081234567
Matched with rule 1
Original number: 02081234567 Translated number: 1111

Number 2 takes any number and adds a 9 to the beginning.

voice translation-rule 2
rule 1 /^.*/ /9\0/

R1#test voice translation-rule 2 02081234567
Matched with rule 1
Original number: 02081234567 Translated number: 902081234567

Number  3 translates a dialed number beginning with +44 or + to 90 or 900.

voice translation-rule 3
rule 1 /^\+44/ /90/
rule 2 /^\+/ /900/

R1#test voice translation-rule 3 +442081234567
Matched with rule 1
Original number: +442081234567 Translated number: 902081234567

R1#test voice translation-rule 3 +1123456789
Matched with rule 2
Original number: +1123456789 Translated number: 9001123456789

Number 4 translates a 4 digit number beginning with 5, drops the 5 and appends a country code and an area code.

voice translation-rule 4
rule 1 /^5\(…$\)/ /00442081234\1/

R1#test voice translation-rule 4 5678
Matched with rule 1
Original number: 5678 Translated number: 00442081234678

Number 5 translates any number beginning with 901* to 0044 and any number beginning with 900* drops the 9.

R1#test voice translation-rule 5 9020812345678
Matched with rule 1
Original number: 9020812345678 Translated number: 004420812345678

R1#test voice translation-rule 5 90012345678910
Matched with rule 2
Original number: 90012345678910 Translated number: 0012345678910

RH

I was asked question about MPLS labels within a VRF. Well the question was ” when I type the command ‘show mpls ldp bindings vrf xxx‘ ” I don’t see any labels for my remote site prefixes.

In this case these labels aren’t assigned by LDP they are assigned by BGP.

The command he was looking for was “show ip bgp vpnv4 vrf xxx labels” I think a light went on in his head when i explained this to him!

If your still confused , imagine the LSP (unidirectional) R1 -> R4 is basically a virtual connection if you like , where R4 is the egress LSR for the packet. The packet will travel via R1 -> R2 -> R3 -> R4. The next hop actually is listed as R4 even though it has to pass through R2 and R3. Which by the way has it own labels to add on top of bottom of stack label for R4.

Capture

R1 pushes on the label 1234 for R4 and another label on top for R2 which is 22, next R2 removes its own label (22) and adds the label for R3 which is 33, R3 removes its own label (33) and forwards the packet with the label 1234 to R4. Bottom of stack bit is set to 1, R4 removes the label and forwards.

https://tools.ietf.org/html/rfc3107

RH

It’s worth making some notes on this subject to clear up a few misconceptions I found online.

Firstly I setup a lab to confirm what i’m about to say, the reason we use this command is to allow QoS to correctly classify or view the packets based on the original header, if the packet is encapsulated  it’s  treated the same as any other encapsulated packet. The original header and its QoS value is now unknown to the forwarding device.

So by enabling this command we can apply the classification before the encapsulation or tunneling happens.

Apply the command “qos pre-classify” to a tunnel interface, a crypto-map or a virtual tunnel interface.

Classification based on layer3 and layer4 information is the exact reason we would consider using this feature, classification based on TOS or DSCP values do not need to use this feature, that’s because of TOS byte preservation inherently built into IPSEC.

Once you’ve added the pre-classify command, apply a service-policy to the physical interface outbound, then all IP packets will be classified pre-encapsulation on any tunnels egressing that physical interface. In other words you will see hits on the policy-map individual classes.

A really great resource I found online is this QoS values calculator check it out………….

http://www.netcontractor.pl/blog/?p=371

RH

This post will show you how to configure a DHCP scope on your Cisco device.

DHCP uses the transport layer protocol UDP. DHCP server uses port 67 and the client uses port 68. DHCP would fall into layer 7 application layer protocols.

Create your pools just like below and add any options in you require i’ve shown 2 different option types one is IP and one is ASCII. You can add as many options as you need.

ip dhcp pool vlan10
network 10.10.10.0 255.255.255.0
update dns both override
domain-name mydomain.com
dns-server 10.1.1.111 10.2.2.222
netbios-name-server 10.1.1.111 10.2.2.222
default-router 10.10.10.1
option 137 ascii http://myserver.com/update
option 150 ip 192.168.101.1
lease 3
!
ip dhcp pool vlan16
network 10.10.16.0 255.255.255.0
update dns both override
domain-name mydomain.com
dns-server 10.1.1.111 10.2.2.222
netbios-name-server 10.1.1.111 10.2.2.222
default-router 10.10.16.1
option 150 ip 192.168.101.1
option 137 ascii http://myserver.com/update
lease 3
!

To add static DHCP reservations you need to add the MAC address as below. Note they start with ’01’ and in dotted hexadecimal. The ’01’ means that its Ethernet media type.

ip dhcp pool static-user1
host 10.10.10.54 255.255.255.0
client-identifier 01bb.cccc.dddd.ff
!
ip dhcp pool staticuser2
host 10.10.16.53 255.255.255.0
client-identifier 01xx.yyyy.zzzz.aa

The above configuration would be added to your switch that contains your SVI’s.

Confirm your configuration by using these commands below.

show ip dhcp binding – This will show all assigned IP’s and MAC address.
show ip dhcp pool [pool name] – This will show information on number of IP’s leased.
show ip dhcp conflict – This will show any conflicts in your pools.
clear ip dhcp binding | conflict [x.x.x.x] | * – This will clear the pool of the address you specify or all in the case of *.

DHCP

RH